Тестовые задачи по геомеханике открытых, комбинрованных и подземных горных работ

Задача № 1

Задание: выполнить расчет допустимых расстояний между геотехническими скважинами.

Исходные данные: относительная ошибка (погрешность оценки категории запасов, согласно стандартов ГКЗ или *CRIRSCO* по стадиям изученности) по *CRIRSCO* при стадии проектирования Pre Feasibility Study $\varepsilon = 25\%$; коэффициент изменчивости объектов разведки (согласно рекомендациям таблицы «Количественные характеристики изменчивости основных свойств оруденения», приведенной в Приложении 1 к Методическим рекомендациям по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых) K = 1,5.

Задача № 2

Задание: определить значения главных напряжений, считая массив упругой средой.

Исходные данные: расчетная глубина H=1000 м; средняя плотность пород $\gamma=2700$ кг/м³; коэффициент Пуассона $\mu=0.25$.

Задача № 3

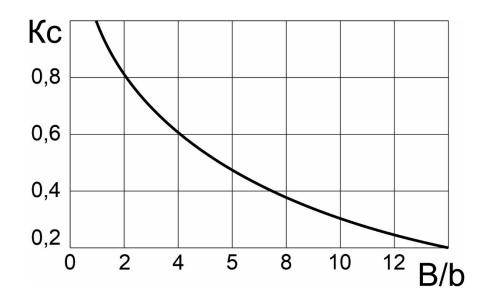
Задание: определить значения главных напряжений, считая массив сыпучей средой.

Исходные данные: расчетная глубина H=1000 м; средняя плотность пород $\gamma=2700$ кг/м³; угол внутреннего трения $\varphi=42^{\circ}$.

Задание: оценить возможность рассматривать массив как упругую или сыпучую среду.

Исходные данные: расчетная глубина H=1200 м; средняя плотность пород $\gamma=2600\,$ кг/м³; коэффициент структурного ослабления $K_c=0,25$; коэффициент длительной прочности $\xi=0,7$; коэффициент Пуассона $\mu=0,25$; коэффициент крепости f=15.

Задача № 5


Задание: определить размеры области массива, при которых массив можно рассматривать как сыпучую среду.

Исходные данные: максимальный размер структурного блока b = 0.4 м.

Задача № 6

Задание: определить коэффициент структурного ослабления пород.

Исходные данные: ширина выработки B=4,0 м; максимальный размер структурного блока b = 0,4 м.

Задание: определить на какой глубине от поверхности массив горных пород нельзя рассматривать как упругий.

Исходные данные: средняя плотность налегающих пород $\gamma = 2600 \, \mathrm{kr/m^3}$; коэффициент структурного ослабления $K_c = 0.25$; коэффициент длительной прочности $\xi = 0.7$; коэффициент Пуассона $\mu = 0.25$; коэффициент крепости f = 15.

Задача № 8

Задание: определить коэффициент устойчивости откоса.

Исходные данные: сцепление C = 2,1 т/м²; угол внутреннего трения $\phi = 15^{\circ}$; длина поверхности скольжения l = 20 м; веса откосов G_i , т и углы α_i , образуемые радиус-векторами с вертикалью по отсекам, приведены в таблице.

Расчетны й блок	Gi, T	$\alpha_{\rm i}$	cosαi	N _i , T	Ni·tgφ, τ	$sin\alpha_i$	Ті, т
1	20	55					
2	40	30					
3	35	10					
4	15	-10					

Задача № 9

Задание: выполнить расчет нагрузки на грунт в карьере от карьерного автосамосвала САТ773.

Исходные данные: карьерные автосамосвалы САТ773 грузоподъемностью 55,5т имеют следующие характеристики: полный вес «Р» а/с с грузом – 99,3 тонны; параметры а/с: длина – 9,12 м, ширина – 4,46 м, высота – 4,4м. Параметры: ширина, диаметр шин и их количество приведены в таблице.

Таблица – Габаритные характеристики автосамосвала САТ773

Наименование	Параметры
Ширина шин L 24.00R35, м	0,65
Диаметр колеса D 24.00R35, м	2,16
Количество шин п, шт.	6 (2 и 4)

Задача № 10

Задание: выполнить расчет нагрузки на грунт в карьере от подземного автосамосвала МТ2200.

Исходные данные: подземные автосамосвалы МТ2200 грузоподъемностью 22 т имеют следующие характеристики: полный вес «Р» а/с с грузом — 42,5 тонны; параметры а/с: длина — 9,20 м, ширина — 2,40 м, высота — 2,13 м, распределение массы а/с с грузом: передний мост 67 %, задний — 33 %. Параметры: ширина, диаметр шин и их количество приведены в таблице.

Таблица – Габаритные характеристики автосамосвала МТ2200

Наименование	Параметры
Ширина шин L 18.00R25, м	0,50
Диаметр колеса D 18.00R25, м	1,67
Количество шин n, шт.	4 (2 и 2)

Задача № 11

Задание: оценить устойчивость пород на контуре шахтного ствола круглой формы на протяженных участках и на сопряжениях с околоствольными дворами; определить предельные глубины, ниже которых породы не переходят в неустойчивое состояние.

Исходные данные: первый горизонт расположен на глубине $H_1=600\,\mathrm{m}$ от поверхности, а второй на глубине $H_2=700\,\mathrm{m}$. Средняя плотность пород $\gamma=2800\,\mathrm{kr/m^3}$. Первое сопряжение заложено в породах, имеющих коэффициент крепости $f_1=10$, коэффициент структурного ослабления $\mathrm{K_{c,1}}=0.3$; коэффициент длительной прочности $\xi_1=0.75$, а второе – в породах с $f_2=12$, $\mathrm{K_{c,2}}=0.25$, $\xi_2=0.8$;

коэффициент концентрации сжимающих напряжений принимается равным $K_3=3$ на протяженных участках выработки и равным $K_3=6$ на сопряжениях с горизонтальными выработками.

Задача № 12

Задание: оценить устойчивость выработки прямоугольной сводчатой формы, имеющей свод и вертикальные стенки. Принять решение о необходимости возведения крепи.

Исходные данные: коэффициент крепости f=10; расчетная глубина $H=600\,\mathrm{m}$; средняя плотность налегающих пород $\gamma=3000\,\mathrm{kr/m^3}$; коэффициент бокового распора $\lambda_1=0.25$; коэффициент структурного ослабления $\mathrm{K_c}=0.2$; коэффициент длительной прочности $\xi=0.8$.

Форма выработки	Коэффициенты концентрации		Примечание
	напряжений		
	Сжимающих в Растягивающих		
	боках K_1 в кровле K_2		
	(в долях от γH) (в долях от		
	$\lambda_1 \gamma H$		
Прямоугольно-сводчатая	2	0,4	Для пород с $f > 12$
2		0,3	Для пород с $f < 12$

Задача № 13

Задание: оценить устойчивость горизонтальной выработки и рекомендовать возможные виды крепи.

Исходные данные: расчетная глубина заложения H = 600 м. Породы однородные, трещиноватые, коэффициент крепости f = 15, коэффициент структурного ослабления $K_c = 0.4$. Выработка имеет прямоугольно — сводчатую форму; высота вертикальной стенки h = 2.5 м; ширина выработки по кровле B = 3 м;

плотность пород $\gamma=2800$ кг/м³; коэффициент длительной прочности $\xi=0.8$; коэффициент бокового распора $\lambda_1=0.3$.

Форма выработки	Коэффициенть	і концентрации	Примечание
	напряжений		
	Сжимающих в Растягивающих		
	боках K_1 в кровле K_2		
	$($ в долях от $\gamma H)$ $($ в долях от		
	$\lambda_1 \gamma H$		
Прямоугольно-сводчатая	2	0,4	Для пород с $f > 12$
	2	0,3	Для пород с $f < 12$

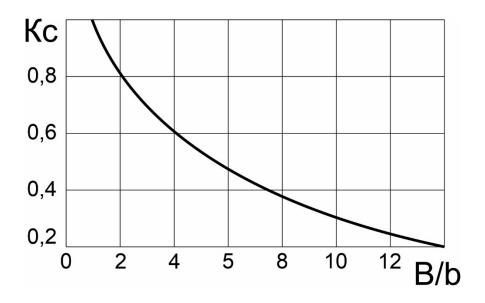
Значения П _у	Расположение выработок	Рекомендуемая крепь	
	относительно		
	напластования пород		
Не более 0,1	Вкрест простирания	Без крепи или набрызгбетонная толщиной 3 см	
	(и в однородных без		
	напластования)		
0,10-0,24	То же	Набрызгбетонная толщиной 3-5 см	
Более 0,24	>>	Комбинированная из анкеров и набрызгбетона	
Не более 0,1	По простиранию	Без крепи или набрызгбетонная толщиной до 3 см	
	напластования		
0,1-0,24	То же	Комбинированная, расстояние между анкерами	
		0,7-1,1 м, толщина набрызгбетонного покрытия 3-5	
		CM.	
Более 0,24	>>	Металлическая арочная податливая. Параметры	
		определяются расчетом.	

Задача № 14

Задание: определить необходимую толщину крепи шахтного ствола.

Исходные данные: последовательная схема проходки; для протяженной части ствола радиус в свету $r_0=3$ м; ствол пересекает пологозалегающие породы при нормативном давлении $P^{\rm H}=200~{\rm к}\Pi {\rm a};$ коэффициент перегрузки n=1,3; монолитный бетон марки M200; расчетное сопротивление бетона сжатию, принимаемое в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций $R_{\rm пp}=9000~{\rm k}\Pi {\rm a};$ коэффициенты, учитывающие длительную нагрузку, условие для нарастания прочности и температурные колебания, принимаемые в

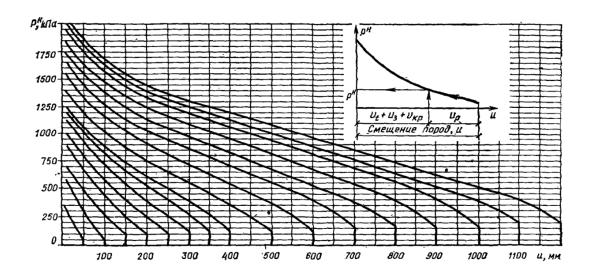
соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций: $m_{6_1}=0.85; m_{6_3}=0.85; m_{6_7}=1.00;$ коэффициент работы крепи $m_{y_{\rm K}}=1.25;$ коэффициент концентраций напряжений в конструкции крепи на протяженных участках ствола и в районе сопряжения $k_p=1;$ толщина породобетонной оболочки, образующейся за счет проникания бетона в окружающие нарушенные породы: для набрызгбетона принимается равной $\delta_{\rm n6}=50$ мм, для остальных типов крепи $\delta_{\rm n6}=0.$


Тип крепи	Коэффициент условий работы бетона, $m_{ m y}$
Набрызгбетонная	0,5
Сборная	0,75
Монолитная	0,8

Угол залегания пород α,	Коэффициент, $n_{\scriptscriptstyle m H}$		
град	При последовательной и	При совмещенной схеме	
	параллельной схемах проходки	проходки	
До 10	2	1,75	
От 10 до 35	2,5	2	
Более 35	2,75	2,25	

Задача № 15

Задание: определить расстояние между анкерами, исходя из условия невыпадения кусков (отсутствует натяжение анкеров).


Исходные данные: коэффициент структурного ослабления $K_c = 0.4$; ширина выработки B=3.0 м, b- размер структурного блока, м.

Задача № 16

Задание: установить расчетную нагрузку на рамную крепь на 1 м выработки, тип спецпрофиля и плотность крепи.

Исходные данные: магистральная выработка; буровзрывной способ проведения, ширина выработки B=5 м; величина расчетного смещения пород кровли магистральной выработки составляет u=200 мм; коэффициент перегрузки, принимаемый $k_{\rm II}=1,05$; коэффициент $k_{\rm H}=1$; коэффициент условий проведения выработок, принимаемый при буровзрывном способе $m_{\rm B}=1$.

Тип	Площадь сечения	Ширина выработки b,	Несущая способность
спецпрофиля	выработки S , M^2	M	крепи NS, кН/раму
СВП-17	До 7	Свыше 2,8 до 3,3	260
СВП-22	Свыше 7 до 14	<i>≫</i> 3,3 <i>≫</i> 4,2	300
СВП-27	» 10 » 15	<i>≫</i> 4,2 <i>≫</i> 5	330
СВП-33	≫ 14	≫ 5 ≫ 6	370

Задание: определить допустимый пролет горизонтального обнажения в горной выработке.

Исходные данные: длина выработки b=250 м; предел прочности пород на сжатие $\sigma_{\text{сж}}=64$ МПа; плотность пород $\gamma=2,72\frac{\text{т}}{\text{м3}}$; глубина расположения выработки H=335 м; коэффициент запаса прочности n=3.

Залача № 18

Задание: определить допустимый пролет наклонного обнажения в горной выработке.

Исходные данные: длина выработки b=250 м; предел прочности пород на сжатие $\sigma_{\rm cж}=64$ МПа; плотность пород $\gamma=2,72\frac{\rm T}{\rm M3}$; глубина расположения выработки H=335 м; коэффициент запаса прочности n=3; угол падения пород кровли $\alpha=75$ град.

Задача № 19

Задание: определить допустимую ширину междуэтажного целика.

Исходные данные: горизонтальная мощность $m_{rop} = 4,5$ м; угол падения рудной залежи (жилы) $\alpha = 75^{\circ}$; коэффициент Пуассона $\mu = 0,4$; плотность пород $\gamma = 2,72$ т/м³; глубина расположения целика H = 335,0м; длина блока L = 50м; высота

этажа $h_{\text{эт}}$ =40,0м; предел прочности на сжатие $\sigma_{c,\kappa}$ =6400т/м²; коэффициент длительной прочности $K_{\text{вр.}}$ =0,8; коэффициент запаса $K_{\text{зап}}$ =2,0.

Задача № 20

Задание: определить допустимую ширину междукамерного целика.

Исходные данные: горизонтальная мощность $m_{\text{гор}} = 4,5$ м; угол падения рудной залежи (жилы) $\alpha = 75^{\circ}$; коэффициент Пуассона $\mu = 0,4$; плотность пород $\gamma = 2,72$ т/м³; глубина расположения целика H = 335,0м; длина блока L = 50м; высота этажа $h_{\text{эт}} = 40,0$ м; предел прочности на сжатие $\sigma_{c,c} = 6400$ т/м²; коэффициент длительной прочности $K_{\text{вр.}} = 0,8$; коэффициент запаса $K_{\text{зап}} = 2,0$; горизонтальная нагрузка $P_{\text{г}} = 1385900,7$ т; вертикальная нагрузка $P_{\text{в}} = 671835,6$ т.

Задача № 21

Задание: определить допустимость принятой в проекте ширины междукамерного целика $h=20,0\,$ м с учетом размещения в нем вентиляционно-ходового восстающего BXB 2,4x2,1.

Исходные данные: по технологическим факторам ширина МКЦ с ВХВ принимается h = 20.0 м; горизонтальная мощность $m_{\text{гор}} = 4.5$ м; угол падения рудной залежи (жилы) $\alpha = 75^{\circ}$; коэффициент Пуассона $\mu = 0.4$; плотность пород $\gamma = 2.72$ т/м³; глубина расположения целика H = 335.0м; длина блока L = 50м; высота этажа $h_{\text{эт}} = 40.0$ м; предел прочности на сжатие $\sigma_{c,m} = 6400$ т/м²; коэффициент длительной прочности $K_{\text{вр.}} = 0.8$; коэффициент запаса $K_{\text{зап}} = 2.0$; ширина вентиляционно-ходового восстающего $a_{\text{в}} = 2.4$ м; среднее расстояние между осями соседних рассечек, пройденных из восстающего $h_{\text{пр}} = 5.0$ м; ширина рассечки в целике $-h_{\text{p}} = 2.4$ м.

Задание: определить допустимое расстояние расположения горнокапитальных и магистральных подготовительных выработок от очистных пространств.

Исходные данные: ширина выработанного пространства а =40м; плотность породы γ =2,72т/м³; глубина работ H =335м.

Задача № 23

Задание: определить допустимое расстояние между параллельными горизонтальными выработками (минимально допустимой ширины целика между погрузочными заездами).

Исходные данные: высота выработки $h_{\rm B}$ =4,5 м; ширина выработки а =4,5м; прочность пород на сжатие $\sigma_{\rm CW}$ =64 МПа; плотность пород γ =2,72 т/м³; глубина работ H=335,0 м; коэффициент запаса $k_{\rm 3}$ =2.

p	f(p)	p	f(p)	p	f(p)
0,008	0,765	0,3	0,373	7	0,073
0,009	0,757	0,4	0,335	8	0,068
0,01	0,749	0,5	0,306	9	0,063
0,02	0,690	0,6	0,284	10	0,059
0,03	0,652	0,7	0,265	20	0,037
0,04	0,622	0,8	0,249	30	0,029
0,05	0,597	0,9	0,236	40	0,024
0,06	0,577	1	0,224	50	0,020
0,07	0,559	2	0,155	60	0,018
0,08	0,543	3	0,123	-	-
0,09	0,528	4	0,104	-	-
0,1	0,516	5	0,091	-	-
0,2	0,426	6	0,081	-	-

Задание: определить допустимое расстояние между сближенными рудными залежами.

Исходные данные: минимальный размер выработанного пространства а = 40м; прочность пород на сжатие $\sigma_{\text{Cж,\Pi}} = 64\text{M}\Pi a$; угол падения залежи $\alpha = 75^{\circ}$; коэффициент запаса $k_3 = 2$.

Задача № 25

Задание: выполнить расчет ширины неудароопасного угольного целика между штреками № 1 и № 2 (рисунок) при многоштрековой подготовке выемочного столба одиночного угольного пласта.

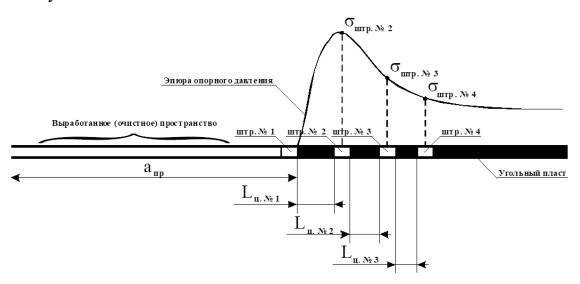


Схема для расчета системы податливых неудароопасных целиков при многоштрековой подготовке выемочных столбов

Исходные данные: суммарный размер отработанных лав по угольному пласту, прилегающих к проекции целика № 1 (рисунок) а = 600,0 м; ширина подготовительной выработки $b_{\text{штр.}} = 5,0$ м; предел прочности образцов угля на одноосное сжатие $\sigma_{\text{сж.}} = 14,0\,\text{М}\Pi \text{a}$; средний объемный вес толщи вышележащих пород $\gamma = 2,54\,\text{ г/м}^3$; глубина расположения целика $H = 1000,0\,\text{м}$; вынимаемая мощность угольного пласта $m = 0,9\,\text{м}$.

Задание: выполнить расчет ширины неудароопасного угольного целика между штреками № 2 и № 3 (рисунок) при многоштрековой подготовке выемочного столба одиночного угольного пласта.

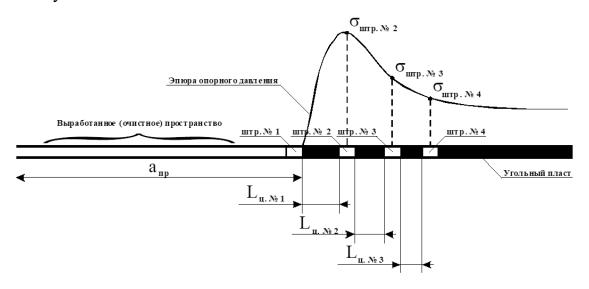


Рисунок — Схема для расчета системы податливых неудароопасных целиков при многоштрековой подготовке выемочных столбов

Исходные данные: суммарный размер отработанных лав по угольному пласту, прилегающих к проекции целика № 1 (рисунок) а = 600,0 м; ширина подготовительной выработки $b_{\text{штр.}} = 5,0$ м; предел прочности образцов угля на одноосное сжатие $\sigma_{\text{сж.}} = 14,0$ МПа; средний объемный вес толщи вышележащих пород $\gamma = 2,54$ т/м³; глубина расположения целика $\gamma = 1000,0$ м; вынимаемая мощность угольного пласта $\gamma = 0.9$ м.

Задание: выполнить расчет ширины неудароопасного угольного целика между штреками № 3 и № 4 (рисунок) при многоштрековой подготовке выемочного столба одиночного угольного пласта.

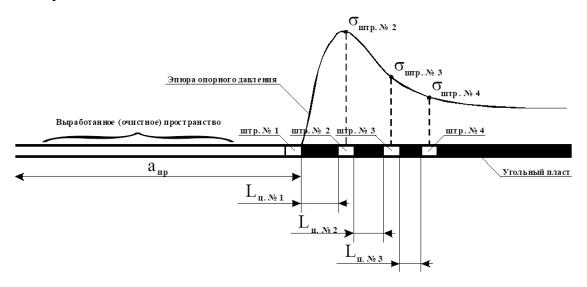
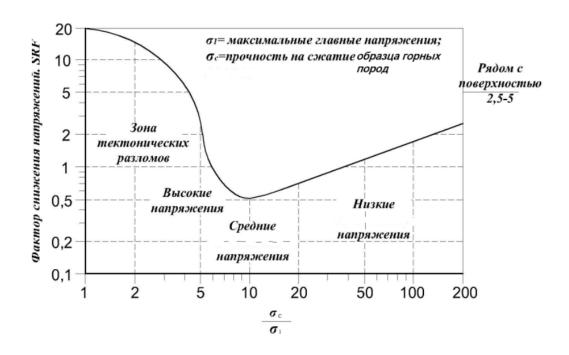


Рисунок – Схема для расчета системы податливых неудароопасных целиков при многоштрековой подготовке выемочных столбов

Исходные данные: суммарный размер отработанных лав по угольному пласту, прилегающих к проекции целика № 1 (рисунок) а = 600,0 м; ширина подготовительной выработки $b_{\text{штр.}} = 5,0$ м; предел прочности образцов угля на одноосное сжатие $\sigma_{\text{сж.}} = 14,0$ МПа; средний объемный вес толщи вышележащих пород $\gamma = 2,54$ т/м³; глубина расположения целика $\gamma = 1000,0$ м; вынимаемая мощность угольного пласта $\gamma = 0.9$ м.

Задание: выполнить оценку степени трещиноватости пород по показателю качества породы RQD.

Исходные данные:


Общая длина	Длина
интервала замера (см)	сплошных участков породы, см
200,0	7,5
	2,5
	5,0
	11,0
	9,0
	15,0
	17,0
	13,0
	11,0
	19,0
	13,0
	6,4
	1,5
	1,9
	7,0

Описание массива	RQD,
	%
Очень слабый. Очень сильнотрещиноватые породы	от 0 до 25
Слабый. Сильнотрещиноватые породы	от 25 до 50
Средний. Среднетрещиноватые породы	от 50 до 75
Хороший. Слаботрещиноватые породы	от 75 до 90
Отличный. Очень слаботрещиноватые породы	от 90 до 100

Задача № 29

Задание: определить фактор снижения напряжений SRF.

Исходные данные: глубина горных работ H=800 м; плотность пород $\gamma=2,5$ т/м3 ; прочность пород на сжатие $\sigma_{\rm cж}=80$ МПа.

Задача № 30

Задание: выполнить оценку устойчивости пород по классификации Бартона (Q-система).

Исходные данные: показатель качества породы RQD = 60 %; количество систем трещин J_n = 4,0; шероховатость трещин J_r = 1,5; индекс изменённости трещин J_a = 3,0; обводнённость пород выработок J_w = 1,0; фактор снижения напряжений SRF = 0,2.

Рейтинг горных	Категория	Описание горного массива
пород		
Q		
0,001-0,01	IVб	Исключительно неустойчивый
0,01-0,1	IVa	Чрезвычайно неустойчивый
0,1-1	III6	Очень неустойчивый
1-4	IIIa	Неустойчивый
4-10	IIб	Средней устойчивости
10-40	IIa	Устойчивый
40-100	Iб	Очень устойчивый
100-400	Ia	Чрезвычайно устойчивый
400-1000	I	Исключительно устойчивый

Список литературы

- 1. Об определении оптимальных расстояний между разведочными выработками в связи с различными размерами участков и анизотропностью тел полезных ископаемых / Л.М. Петровский // Известия Томского ордена трудового красного знамени политехнического института имени С.М. Кирова. Том 217. 1971. с. 115-123».
- 2. Шехурдин В.К. Задачник по горным работам, проведению и креплению горных выработок: Учебное пособие. М.: Недра, 1985, 240 с.
- 3. Методические указания по определению параметров бортов и уступов карьеров, разрезов и откосов отвалов. М.: ИПКОН РАН, 2022. 80 с.
- 4. Руководство по проектированию подземных горных выработок и расчету крепи / ВНИМИ, ВНИИОМШС Минуглепрома СССР. М.: Стройиздат, 1983. 272 с.
- 5. Баранов А.О. Расчет параметров технологических процессов подземной добычи руд. М.: Недра, 1985. 224 с.
- 6. Методические указания по определению размеров целиков и камер при подземной разработке руд цветных металлов. Чита, ВНИПИгорцветмет, 1988 г.
- 7. Расчетные методы в механике горных ударов и выбросов: справочное пособие. М.: Недра, 1992 г.
- 8. Методическое обеспечение расчета системы неудароопасных целиков при многоштрековой подготовке выемочных столбов / Д.В. Сидоров // Записки Горного института. 2013. Т. 205. С. 145–147.
- 9. D. Jean Hutchinson, Mark S. Diederichs Cablebolting in underground mines, Published by BiTech Publishers Ltd. 173 11860 Hammersmith Way Richmond, British Columbia Canada V7A 5G1: 1996. 417 p.